

Biomass Compositional Analysis

New Tools and Methods Supporting Biomass Utilization

May 1-2, 2003

Bonnie R. Hames National Renewable Energy Laboratory

Biomass Analysis at NREL

Biomass Analysis Experts: more than 20 years of experience Experienced in the analysis of a wide variety of biomass types Standard Methods published through ASTM E48 Biotechnology Standard Reference Materials available through NIST.

Importance of Biomass Analysis in Biomass Utilization

Natural heterogeneity of biomass

- Complex polymer matrix
- Inherent property of biomass
- Difficult to control in feedstock
 - Function of many variables
 - Feedstocks often residues of other process

Significant challenge for emerging industries

- Complexity of biomass underestimated
- Traditional methods are expensive and slow
- New tools and methods needed

Advantages of Rapid Biomass Analysis

- Useful in industrial applications
 - Demonstrated technology
 - High impact / low risk
- Faster
 - Minutes instead of days
 - Minimal sample preparation
- Cheaper
 - \$10 \$20 per sample
 - Compared to \$800-\$2,000 for wet analysis
- Better
 - Calibrated using best methods
 - Less operator dependent

Applications of Rapid Biomass Analysis

Real-time monitoring

Carbohydrates
Lignin
Protein
Moisture
Cell Mass

Ethanol
Other Products
Heating Value
Ethanol Production Capacity

Integrated with Other Projects

Rapid Biomass Analysis Method Development Essentials

1. Calibration Samples

- Determines the range of new method
- Robust model requires approximately 100 samples
- Should resemble samples to be analyzed
- Account for variability (region, season, process, severity etc.)
- Easier to obtain in research environments

2. Chemical Characterization

- Determines precision and accuracy of new method
- Requires appropriate analytical methods
- Most expensive part of method development

Rapid Biomass Analysis Method Development Essentials

3. Rapid Technique

- Determines speed and cost of new method
- Should be robust and reproducible in collection environment
- Must be sensitive to compositional changes

4. Multivariate Analysis

Translates spectroscopic data into compositional information

5. QA/QC

- Guides use of new method
- Calibration checks (include use of well characterized standard reference materials)
- Sample screening (use of outlier flags, e.g. GH=3.0----2.5 std dev-----99.5%population)

Improving Calibration Information

Wet Chemical Methods for Corn Stover Analysis

Methods in Use

- Carbohydrates
 - Glucan
 - Xylan
 - Arabinan
 - Mannan
 - Galactan
- Lignin
 - Acid Insoluble
 - Acid Soluble
- Protein (N%)
- Soil
- Structural Inorganics
- HMF / Furfural
- Acetyl groups

Methods being Developed or Improved

- Sucrose
- Uronic Acids / Pectins
- Amino Acids / Protein
- Nitrates / Nitrites
- Chlorophyll
- Protein Degradation Products
- Carbohydrate Degradation Products
- Physical properties

Corn Stover Feedstock NIR/PLS Method

Pretreated Corn Stover: Dry solids

Pretreated Corn Stover: Slurry Method

Predicted vs. Measured Pretreatment: liquors1.eqa

- Transmission spectroscopy
- •Helma, flow-through quartz cuvette cell (pathlength of 0.5mm)
- Water used as reference
- •Temperature Controlled at 60°C

- Sugars
 - ➤ Monomers and Oligomers
- Glycerol
- •pH
- Acetic Acid
- HMF and Furfural

Investigating Different Spectroscopic Techniques

Dry solid method

- •Reflectance spectroscopy
- Slurry method
- •Transflectance spectroscopy
- Liquid method
- Transmission spectroscopy

Improving Research Providing New Levels of Information

- Rapid Analysis Methods allow experiments that require analysis of hundreds of samples
 - Not possible using traditional methods
 - Too expensive by wet chemical methods
 - \$2,000/ sample x 1,000 samples = \$2,000,000
 - NIR/PLS
 - \$20/sample x 1,000 samples = \$20,000
 - Too slow by wet chemical methods
 - Years to process 1,000 samples
 - NIR/PLS
 - 5-7 days to analyze 1,000 samples

Plans for Improving Wet Chemical Methods

- Expand slate of analyses
 - New constituents
 - New feedstocks
 - New processes
 - Physical properties measurements
- Improve current methods
 - Improve precision and accuracy
 - Improve total mass closures
 - Expand QA/QC methods
- Develop and validate feedstock-specific methods
 - Publish Validated methods through ASTM
 - Post on NREL website

Plans for Future Rapid Analysis Methods Development

- Demonstration in NREL Pilot Plant
 - On-line and at-line methods
 - Calibration transfer protocols
- Improve Field methods
 - Feedstock assessment
 - Genetic screening
- Expand slate of Rapid Analysis Methods
 - Different pretreatment chemistries
 - Corn Fiber, Corn Bran, DDG
 - SSF residues and fermentation samples
 - Field methods
 - Elemental Analysis and Higher Heating Value of process residues

Critical Issues

- High Cost
 - Cost of RA method development around \$300,000
 - Methods are feedstock and process specific
 - Many methods needed to monitor entire biomass conversion process
- Resource issues
 - Current pace and scope of these projects cannot provide rapid analysis methods for industrial scale on-line applications in the near future

Biomass Rapid Analysis Network BRAN

- Consortium for Rapid Biomass Analysis Method Development
 - Fast-track rapid analysis method development
 - Expand calibrations for general applications
 - Share costs
 - Sample collection
 - Wet chemical analysis
 - Spectroscopic analysis
 - Consensus method validation
 - Creating and training future workforce
 - Communication network

Biomass Analysis Acknowledgements

- Wet Chemical Methods
 - David Johnson
 - Ray Ruiz
 - Chris Scarlata
 - Amie Sluiter
 - Justin Sluiter
 - David Templeton

- Rapid Analysis
 Methods
 - Ray Ruiz
 - Amie Sluiter
 - David Templeton
- Industrial Partnerships
 / BRAN
 - John Ashworth